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Abstract

The tarnished plant bug has become increasingly resistant to organophosphates in recent years. To better understand
acephate resistance mechanisms, biological, biochemical, and molecular experiments were systematically conducted with
susceptible (LLS) and acephate-selected (LLR) strains. Selection of a field population with acephate significantly increased
resistance ratio to 5.9-fold, coupled with a significant increase of esterase activities by 2-fold. Microarray analysis of 6,688
genes revealed 329 up- and 333 down-regulated ($2-fold) genes in LLR. Six esterase, three P450, and one glutathione S-
transferase genes were significantly up-regulated, and no such genes were down-regulated in LLR. All vitellogenin and
eggshell protein genes were significantly down-regulated in LLR. Thirteen protease genes were significantly down-
regulated and only 3 were up-regulated in LLR. More than twice the number of catalysis genes and more than 3.6-fold of
metabolic genes were up-regulated, respectively, as compared to those down-regulated with the same molecular and
biological functions. The large portion of metabolic or catalysis genes with significant up-regulations indicated a substantial
increase of metabolic detoxification in LLR. Significant increase of acephate resistance, increases of esterase activities and
gene expressions, and variable esterase sequences between LLS and LLR consistently demonstrated a major esterase-
mediated resistance in LLR, which was functionally provable by abolishing the resistance with esterase inhibitors. In
addition, significant elevation of P450 gene expression and reduced susceptibility to imidacloprid in LLR indicated a
concurrent resistance risk that may impact other classes of insecticides. This study demonstrated the first association of
down-regulation of reproductive- and digestive-related genes with resistance to conventional insecticides, suggesting
potential fitness costs associated with resistance development. This study shed new light on the understanding of the
molecular basis of insecticide resistance, and the information is highly valuable for development of chemical control
guidelines and tactics to minimize resistance and cross-resistance risks.
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Introduction

During the last decade, widespread adoptions of transgenic Bt

cotton and altered chemical control schemes have allowed sucking

insect populations to increase. Of these pests, the tarnished plant

bug (TPB), Lygus lineolaris, emerged as the most economically

significant [1]. Management of tarnished plant bug relies almost

exclusively on chemical control. Commonly used insecticides

include pyrethroids, organophosphates, carbamates, and neonico-

tinoids. Acephate, an organophosphorus insecticide, is among the

most widely used insecticides for TPB control. In order to suppress

feeding damages from tarnished plant bug and bollworm/tobacco

budworm, cotton is more frequently sprayed than other major

crops in the South. Over the years, tarnished plant bug has

become increasingly resistant to several chemical insecticides

[2,3,4], including acephate [5].

Acephate (Orthene) has been widely used to control tarnished

plant bug on cotton in the Delta region of Mississippi, Arkansas,

and Louisiana. TPB populations have developed 3- to 5-fold

resistance, and control of these field populations may become

difficult once resistance ratios reached 3-fold or higher [5]. Our

field surveys indicate that susceptibility to acephate decreases as

the growing season progresses. During late season (Aug. to Oct.),

TPBs are substantially less susceptible to insecticides than those

collected in May to July. Susceptibility reaches its lowest level in

October. Our field surveys also indicate that TPB populations

around cotton fields are less susceptible than populations around

corn or soybean fields.

Another important phenomenon in studying TPB resistance to

insecticides is the difficulty of maintaining resistant colonies in the

laboratory. Less susceptible strains tend to have high mortality and

low egg production. Although insecticide selections may increase

resistance level to 10-fold or higher, selected colonies often die or

fail to reproduce enough progeny for further research. Without

further selection with acephate, a resistant colony can be sustained

for a few generations. Resistance gradually decreased and

sustained at 2- to 3-fold higher LC50 than susceptible strain. All
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of these factors limit further investigation of resistance mechanisms

in this important insect pest.

With multiple generations per year, high mobility, and existence

of differential activities of major detoxification enzymes [6], field

populations of TPB across the Delta region have potential to

evolve high levels of resistance to multiple insecticides, especially

when they are under high selection pressure. Examinations of

acephate resistance mechanisms have not been conducted

previously, except for a few limited sequence and gene expression

level comparison of one esterase and one glutathione S-transferase

related to malathion-resistant TPB [7,8]. Increased economic

importance and reports of pyrethroid and organophosphate

resistance [4,9] prompted our research to better understand the

mechanisms of acephate resistance in this cotton pest. By

integrating biological and biochemical assays with novel micro-

array and other molecular analytic tools, this study compared

more than seven thousand genes simultaneously in acephate-

susceptible (LLS) and –selected (LLR) tarnished plant bugs.

Results are expected to generate a general picture of acephate

resistance in TPB and help explain how TPB evolves resistance to

the chemical. In addition, this study provides insight into potential

fitness costs associated with acephate resistance and possible

development of multiple and cross resistance to other classes of

insecticides.

Materials and Methods

Chemicals
The Pierce Coomassie plus protein assay kit (23238) was

purchased from ThermoFisher Sci. (Pittsburgh, PA, USA). Alpha-

naphthyl acetate (1-NA or a-NA) (N8505), beta-naphthyl acetate

(2-NA or b-NA) (N6875), r-nitrophenyl acetate (PNPA) (N8130),

1-chloro-2,4-dinitrobenzene (CDNB) (23,732-9), fast blue salt

(D9805), L-glutathione (GSH) reduced (G6529) were purchased

from Sigma Chemical Co. (St. Louis, MO).

Insect laboratory colony and field collection
A laboratory colony was provided by Kathy Knighten and Fred

Musser at Mississippi State University. The colony has been

maintained on artificial diet for seven years without exposure to

insecticide. Wild adults are introduced into this colony in the

spring of each year. This colony was used as a standard susceptible

strain (LLS). Resistance ratios (LC50 of field-collected population/

LC50 of laboratory strain) were calculated for field and laboratory

strains relative to LLS. A field population (Lula) was collected in

October 2010 from pigweed around a cotton field west of Lula,

Mississippi. Acephate-selected bugs (Lula600) were from an

acephate (OrtheneH 90WP, Valent, Walnut Creek, CA) treatment

of the Lula field population. Approximately 45,000 bugs were

collected and selected with Orthene 90WP at 600 mg/L (or

540 mg a.i./L acephate). Adults were held in a cage (W6D6H:

60660660 cm) covered with 16616 mesh metal screen on all

sides except the bottom (metal sheet). Approximately 20 mL of

acephate solution was used to treat the cage thoroughly from the

top and all 4 sides using a hand sprayer. After treatment with

Orthene (600 mg/L 90WP) for approximately 12 h, survivors

were transferred into a 3.8 L container covered with a fine net

cloth (10 grids/cm) and fed fresh green beans. After the first

acephate treatment for 6 d, survivors were subjected to a dose-

response bioassay. Six acephate concentrations were prepared at

300, 500, 750, 1,000, 1,500, and 2,000 mg/L in d-H2O. A water

only control was also included. Three replicates were used for each

concentration, and 17 adults were used for each replicate. The

adults were placed in 3.8 L container and sprayed with acephate

solutions. After exposure for 10 m, the adults, along with 4 fresh

green bean pods, were transferred into a clean plastic container

(diameter[D]6height[H]: 10.567 cm). Bugs were maintained at

21uC and 14:10 (L:D) h. Mortality was recorded after 48 h and

LC50s were calculated using SAS Probit analysis [10]. Survivors

from Orthene 90WP treatment at 2,000 mg/L (LLR with

resistance ratio .25-fold) were used for comparison of gene

regulation using microarray analysis.

Enzyme activity assay
Esterase and glutathione S-transferase activities were compar-

atively examined using the protocols described by Zhu et al. [6]. In

brief, nine individual tarnished plant bugs from each sample were

homogenized in sodium phosphate buffer. The homogenate was

centrifuged at 10,0006g for 5 minutes at 4uC. Protein concentra-

tions were determined using the Pierce protein assay kit which

utilizes the Bradford method [11]. To determine esterase activity,

micro-titer plate assays were conducted using a-NA, b-NA, and

PNPA as substrates. A Bio-Tek ELx808iu plate reader (Winooski,

VT) was used to monitor a-NA and b-NA reactions at 450 nm for

10 minutes with measurements taken every 15 seconds [12]. For

assays with PNPA, reactions were assayed at 405 nm for

10 minutes with readings taken every 15 seconds [13]. To

determine glutathione S-transferase activities, micro-titer plate

assays were conducted using CDNB as substrate. The reactions

were monitored at 340 nm for 10 minutes with readings taken

every 15 seconds [12].

RNA preparation, cDNA library construction and
sequencing

Three adults (per tube) of L. lineolaris were homogenized in

1000 mL TriZol reagent (Invitrogen, Carlsbad, CA). Three to five

replicates were included for each sample. mRNA was purified

from total RNA using NucleoTrap mRNA purification kit (BD

Bioscience Clontech, Palo Alto, CA). The Creator Smart cDNA

Library Construction Kit (BD Bioscience Clontech) was used for

cDNA library construction, by following manufacturer’s instruc-

tions and modified protocols described by Zhu et al. [14].

Approximately 1 mg mRNA was used for reverse transcription and

cDNA library construction. cDNA was ligated into pDNR-LIB

vector (Clontech). The ligation was used to transform TOP10

competent cells (Invitrogen), which then were plated on chloram-

phenicol-agar plates. Approximately 30,000 clones were obtained

and sequenced with a M13 forward primer on an ABI 3730XL

sequencer (Applied Biosystems Inc., Foster City, CA) located at

the Genomics and Bioinformatics Research Unit, USDA-ARS, in

Stoneville, MS.

Sequence data processing and expression gene chips
After vector trimming and assembling using DNAStar (Ver. 8,

Madison, WI), sequences were subjected to a similarity search for

putative identity against protein and nucleotide databases of the

GenBank in the National Center for Biotechnology Information

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) using Blastx NR, Blastn,

and tBlastX protocols of Blast2GO software (http://www.

blast2go.org/) [15,16] with 1023 for cutoff E-value.

Acquiring microarray data
Roche NimbleGen 72 K gene expression chips in 4-plex format

(Roche NimbleGen, Inc., Madison, WI) were used to compare

global gene expression between the acephate-selected (LLR) and

non-selected (LLS) strains of TPB. A 60-bp specific oligonucleotide

was designed and synthesized as a probe. Approximately 35,000
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probes (average of 5 probes per cDNA) were synthesized and

printed on each gene expression chip. Microarray analysis was

processed using standard NimbleGen array protocols. Total RNA

was extracted from adults using TriZol reagent (Invitrogen).

Double strand cDNAs were synthesized by using the SuperScript

Double-Stranded cDNA Synthesis Kit (Invitrogen) according to

the manufacturer’s protocols. Double strand cDNA samples were

labeled with One-color DNA Labeling Kit and hybridized to the

microarray chips. Microarray data were acquired according to

NimbleScan v.25 User’s Guide through Florida State University

Microarray processing facility. Four arrays (4 replicates) of 72 K

NimbleGen expression chips were processed for each sample.

Analysis of microarray data
After gene expression data were obtained from 4672 K array

processing, ArrayStarH software (DNAStar, Inc., Madison, WI)

was used to analyze and compare microarray data between LLS

and LLR. Expression data were log2-transformed and normalized

through quantile normalization [17], and gene calls were

generated using a Robust Multichip Average (RMA) algorithm

[18]. Normalized data were analyzed using classical parametric

statistics. P-values were calculated using Modified t-test. Clustering

techniques, including the most popular ‘‘hierarchical’’ clustering

and ‘‘k-means’’ clustering, were applied in the microarray data

analysis. Clustering aims at dividing data points (gene or samples)

into groups (clusters) using measures of similarity, such as

correlation or Eucliden distance [19]. Hierarchical clustering

creates a hierarchical, tree-like structure of data, and may be

displayed using a ‘‘heat map’’. By using hierarchical clustering in

this study, the expression levels of each gene could be quantita-

tively compared side by side between LLS and LLR strains.

Scatter plotting was also applied to generate a distribution of more

than 6,688 genes tested in an effort to locate differentially

expressed genes between LLS and LLR. A fold-change cutoff of 2

and p-value threshold of 0.05 were used to determine differential

gene expression (www.illumina.com/documents/products/

whitepapers/whitepaper_RNASeq_to_arrays_comparison.pdf).

Cloning full-length cDNAs coding for esterases
cDNA library sequencing yielded several clones which matched

esterase cDNAs in GenBank. Cloning of full-length cDNAs was

achieved using procedures similar to those of Zhu et al. [7] with

some modifications as described by Yang et al. [20]. Briefly, to

obtain the full length cDNAs, total RNA was extracted from

adults. The SuperScript First Strand cDNA Synthesis kit

(Invitrogen) was used in a reverse transcriptase polymerase chain

reaction (RT-PCR) with 5 mg of total RNA and an oligo-dT

primer for cDNA synthesis. Forward primers were designed and

used with oligo-dT primer in RT-PCR reaction to amplify 39-end

of the esterase cDNA. The 59-end of cDNA for each of the

esterases was obtained by using the 59 rapid amplification of

cDNA end (59 RACE) system (Invitrogen). Two to three specific

reverse primers for each of the three esterases were designed and

used in semi-nested amplifications with a forward abridged anchor

primer from 59-RACE kit. The 59-end of the cDNA was isolated

and C-tailed, and then cloned into a pGEM-T vector (Promega).

Plasmid DNAs were prepared and sequenced using an ABI

3730XL DNA analyzer to confirm full coding sequences of the

esterases. To obtain error-proof full-length cDNAs, total RNAs

from LLS and LLR were used for synthesizing RT-cDNA. RT-

PCR amplification was repeated with a Platinum High Fidelity

Taq DNA polymerase (Invitrogen). The PCR products were

purified using Qiaquick PCR purification kit (Qiagen) and

sequenced from both directions as described above.

Verification of esterase gene expressions using real-time
PCR (qRT–PCR)

Differential expression of 4 up-regulated esterase genes (LLE1–

4), detected by the microarray analysis, were validated by qRT-

PCR according to methods described by Yang et al. [20]. TPB

adults were collected in October 2011 from Lula, Mississippi, the

same location of the original LLR colony. Collected bugs were

divided into two groups. One group of bugs were treated with

1,000 mg/L acephate and maintained on treated green bean

(21uC, L:D = 14:10) for 7 days (Lula1000). Another group of the

bugs were untreated and maintained under the same conditions

for 7 days as an aging control (Lula CK). LLS (untreated) was also

included as a control.

The qRT–PCR assays were performed in a 25 ml reaction

volume using iScriptTM One-step RT-PCR Kit with SYBR Green

(Bio-Rad, Hercules, CA) in a thermal cycler PTC-200 with

Chrome4 detector attached (Bio-Rad). The qRT-PCR thermal

cycling profile was programmed to run at 50uC for 10 min of

cDNA synthesis, 95uC for 5 min of iScript reverse transcriptase

deactivation, followed by 40 cycles of 95uC for 10 s and 55uC for

30 s. A melting curve thermal cycling from 55uC to 95uC with an

increment of 1uC for 10 s was added to check amplification

specificity. Opticon Monitor 3 (Bio-Rad, Hercules, CA) was used

to control all PCR reactions and data output. To obtain absolute

quantities of each gene, two steps of qRT-PCR [20] were

performed for each esterase gene. First qRT-PCR was conducted

to amplify ribosomal 18S gene to estimate RNA concentration for

each sample with 18S housekeeper gene as an internal standard.

RNA samples were adjusted to the same concentration based on

the first qRT-PCR with 18S as the internal standard. Second

qRT-PCR was conducted to achieve an absolute estimation using

standardized RNA samples and target gene (LLE1–4) cDNA as an

internal standard. Three replications (samples) were used for each

treatment, and 5 TPB adults were included in each RNA

preparation. Gene expression quantity was automatically calcu-

Table 1. Biological response and enzymatic activities in acephate-treated tarnished plant bug.

Insect Bioassay Esterase: a-NA Esterase: b-NA Esterase: PNPA GST: CDNB

LC50 a.i. (95%FL) Ratio MV±SE Ratio MV±SE Ratio MV±SE Ratio MV±SE Ratio

LLS 148.3(122.9–174.8) 1 21.662 1 19.461.5 1 29.763.5 1 39.261.6 1

Lula* 321.1(257.8–402.5) 2.2 54.366.3 2.5 27.362.4 1.4 39.263.9 1.3 27.761.9 0.7

Lula600** 874.4(742.7–1042) 5.9 97.7614.3 4.5 55.869.1 2.9 81.768.2 2.8 35.963.1 0.9

*Natural field population collected in Lula, Mississippi.
**Field population collected in Lula, Mississippi and treated with 600 mg/L of acephate (90WP) before it was used for assays.
doi:10.1371/journal.pone.0037586.t001
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Table 2. Identification of 107 significantly up-regulated ($2-fold) genes in LLR using microarrays and analyzed with ArrayStar and
Blat2go protocol (www.blast2go.org).

Seq ID Sequence annotation Fold change P value

L1103 26s ribosomal rna boehmeria macrophylla scabrella 2.02 0.0245

L6649 acid phosphatase-1 2.90 0.0000845

L869 aggrecan core 2.09 0.000243

L3143 aldo-keto reductase 3.45 0.000687

L2988 alpha-amylase 2.58 3.24610‘-6

L542 alpha-amylase 2.44 0.0000186

L3683 alpha-amylase 1 3.83 1.40610‘-6

L4739 alpha-amylase 1 3.70 3.07610‘-6

L6184 alpha-amylase 1 2.36 5.31610‘-6

L881 antigen 5 precursor 2.10 0.00124

L6486 antigen 5 scp domain-containing 2.59 7.90610‘-6

L186 antigen-5-like protein precursor 2.42 0.00155

L4347 carbonyl reductase 4.04 0.0000102

L5131 carbonyl reductase 5.17 3.16610‘-6

L5648 carbonyl reductase 2.68 0.0000357

L305 carboxypeptidase b 2.31 0.0000215

L1451 carboxypeptidase b-like 2.34 0.0000213

LL_390 carboxypeptidase cpvl precursor 3.12 7.07610‘-6

L2051 cell surface sd repeat protein precursor 254.87 0.0000377

L4783 chemosensory protein a 7a 2.34 0.000104

L2075 circumsporozoite protein 2.06 0.000731

L861 circumsporozoite protein 2.50 0.000165

L5167 counting factor associated protein d-like 2.46 0.0000303

L6543 cuticular protein lcp family 2 mrna nasonia vitripennis 3.19 0.00265

L194 cysteine proteinase 2-like digestive enzyme 2.75 0.000159

L3359 cytochrome p450 3.00 0.00168

LL_39 cytochrome p450 2.81 0.000373

L4510 cytochrome p450 6a8 2.70 0.0000229

L2414 elongation of long chain fatty acids protein aael008004 2.58 0.000146

LL_214 enth domain-containing protein 3.33 0.0000125

L1233 esterase [Lygus lineolaris]-1 2.60 0.000102

L2508 esterase-2 2.14 0.00018

L2520 esterase [Lygus lineolaris]-3 2.57 6.67610‘-6

L5104 esterase-4 7.57 5.76610‘-7

LL_227 carboxylesterase-6 2.70 0.000343

L6522 esterase fe4-7 2.17 0.000128

L1833 GK17235 [Drosophila willistoni] 7.23 5.14610‘-6

L4183 GK17235 [Drosophila willistoni] 8.69 0.0000104

L6147 glutathione s-transferase 2.14 0.0000217

L5529 glycoside hydrolases 3.03 3.03610‘-6

L2609 hemagglutinin family protein 2.79 0.0645

L3629 hypothetical protein 16.29 0.0000112

L216 hypothetical protein LOC100678289 (N. vitripennis) 2.11 0.000078

L5474 hypothetical protein LOC100679379 [N. vitripennis] 3.03 8.32610‘-6

LL_225 hypothetical protein LOC100679379 [N. vitripennis] 2.39 0.00242

L1323 immunodominant interspersed repeat antigen 2.22 0.0000199

LL_322 immunodominant interspersed repeat antigen 2.53 0.000425

L5610 isoform a 2.16 0.0000488
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Table 2. Cont.

Seq ID Sequence annotation Fold change P value

L2469 isoform b 2.46 0.0000358

L501 kynurenine-oxoglutarate transaminase 3-like 2.08 9.31610‘-6

LL_632 liprin-beta-2- partial 2.72 0.0000129

L2869 luciferin-regenerating enzyme 2.26 0.0000277

L4778 microsatellite ll-5 sequence apolygus lucorum 2.14 0.0012

L1939 mitochondrial import receptor subunit tom20 homolog 2.05 0.0122

LL_248 mus musculus bac clone rp24-358i7 from chromosome 2.25 0.0000311

L3451 mus musculus chromosome clone rp23- 3.54 2.74610‘-6

L4498 mus musculus chromosome clone rp23- 2.81 0.000247

L1449 mus musculus chromosome clone rp23- 2.26 0.00342

LL_135 mycobacterium complete genome 2.18 0.00135

L753 neuroparsin 1 precursor 3.87 3.87610‘-6

L4114 nocardia farcinica ifm 10152 complete genome 2.32 0.00041

LL_574 nucleolar protein family 2 (h aca small nucleolar rnps) 2.40 0.0000937

L2338 omega-amidase nit2-like 42.92 9.60610‘-7

L4563 pancreatic lipase-related protein 2-like 2.40 0.0000264

L2487 pancreatic triacylglycerol lipase 3.38 0.0000234

L380 partial genome (lygus lineolaris) 2.54 0.386

L964 partial genome (lygus lineolaris) 2.15 0.527

L4630 peptidyl-prolyl cis-trans isomerase 10 2.80 4.80610‘-6

L5883 phospholipid scramblase 1 2.06 0.00206

L4906 plasmodium falciparum 3d7 chromosome 8 4.07 0.00218

L1904 endo-polygalacturonase b 2.16 0.000925

L1124 polygalacturonase 4 2.27 3.32610‘-6

L6079 polygalacturonase 3.65 8.55610‘-6

L3578 endopolygalacturonase 5.61 0.0000182

L3333 polygalacturonase 4.11 0.000803

L518 polygalacturonase pg1 2.02 0.0000231

L4832 endopolygalacturonase 13.92 8.72610‘-6

L2316 endo-polygalacturonase 2.64 0.0000782

L4070 predicted protein [Nematostella vectensis] 2.17 0.000601

L1882 Predicted: C09D4.2 [Hydra magnipapillata] 2.32 0.0000533

L600 Predicted: ENSANGP00000004103 [S. purpuratus] 3.11 0.0000214

L28 protein CLONEX_01831 ZP_03289628 2.40 0.434

L6646 pyridoxamine 5 -phosphate oxidase 2.08 0.00456

L2427 regucalcin 2.26 0.0000378

L2931 regucalcin 2.21 0.000119

L4962 secreted salivary gland 3.80 0.0000262

L5724 serine 3-dehydrogenase 2.13 0.0000213

LL_55 serine protease 36.71 0.000308

L4164 serine protease inhibitor serpin-4 2.99 0.0000112

L3882 serine proteinase stubble 3.92 0.000638

L5938 sp185 333 2.28 0.000225

L5880 spore coat assembly protein 3.37 0.000209

LL_773 spore coat assembly protein exsa 2.92 6.57610‘-6

L1658 st14a protein 2.29 0.0645

L5575 tetraodon nigroviridis full-length cdna 2.10 0.0032

L5521 thaumatin-like protein 2.31 0.0000111

L6464 thaumatin-like protein 2.01 0.0000163
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lated by the Opticon Monitor 3. Quantity of the target gene was

calculated to pg per mg of total RNA (Mean6SE).

Examination of dose responses of field populations to
acephate and imidacloprid

To detect potential resistance to multiple insecticides in TPB,

dose responses to Orthene 90WP (80 mg/L or 72 mg a.i./L

acephate) and imidacloprid 2 L (85 mg/L or 18.19 mg a.i./L) were

evaluated in different field populations. The concentration for each

insecticide was similar to the LC50 value (Note: this value was lower

than the LC50 in Table 1, because both bugs and food were sprayed

in this experiment) against the laboratory susceptible strain (LLS).

TPBs were collected in September 2011 from northwest Mississippi.

Approximately 25 bugs were used for each replicate and 3 replicates

were used for each population. Bugs along with 4 green bean pods

were placed in a plastic container (D6H: 10.567 cm). A 9-cm hole

was cut on lid and covered with a fine net cloth (10 grids/cm). Five

hundred ml of insecticide solution was delivered into the container

using a modified Potter Spray Tower. The sprayer was set at 7.5 psi

with spray distance of 30.5 cm to ensure a uniform deposition of

insecticide mist on inner surface of the container, green beans, and

bugs. Mortality was recorded 48 h after treatment.

Examination of synergistic effect of esterase inhibitors on
acephate toxicity against TPB

A field population was collected in April 2012 from Leland, MS,

and treated with 72 mg a.i./L acephate. A laboratory colony

(LLX) was collected in 2010 from many locations in Delta regions

of Mississippi and Arkansas, and was selected with 225 mg/L

acephate. In this experiment, LLX colony was treated with

144 mg/L acephate. DEF or TPP solution at 1% was prepared by

dissolving inhibitor in ethanol, thereafter, an equal volume of dd-

H2O was added to the solution. The bugs were sprayed with

inhibitor solution one hour before they treated with acephate. The

bugs in control were treated with 50% ethanol in water. Spray

tower settings and spray volume were the same as described above.

Mortality was recorded 48 h after treatment.

Results

Comparison of acephate-susceptibility and enzyme
activities

The acephate LC50 for the susceptible strain (LLS) was

148.3 mg a.i./L (Table 1). The LC50 for the Lula field population

was 2.2-fold higher than LLS. After selection with 600 mg/L

Orthene 90WP, the observed LC50 reached 5.9-fold higher than

LLS and 2.7-fold higher than the unselected Lula field population.

Esterase activity determined with a-NA was 2.5-fold higher in

Lula field population and 4.5-fold higher in the acephate selected

bugs (Lula600) than LLS. The b-NA and PNPA activities also

significantly increased by1.3–1.4-fold in Lula, and by 2.8- to 2.9-

fold in Lula600, respectively (Table 1). Unlike the esterases,

glutathione S-transferase activity in both Lula and Lula600

decreased by 1.4- and 1.1-fold (Table 1).

Microarray analysis of gene regulation in LLR
Identification of differentially expressed genes in

acephate-resistant bug (LLR). A total of 7,446 unique contigs

and singletons were obtained from cDNA library sequencing, and

6,688 genes had valid expression values from microarray analysis.

Hybridization signals were analyzed and gene expression changes

in LLR were presented as mean of fold changes when compared to

the LLS. Of 6,688 genes examined in the LLS and LLR strains,

approximately 9.9% genes were up- or down-regulated in the

LLR. Expressions of the remaining 90% of genes were not

significantly different between LLS and LLR. Based on P values (P

,0.05) and fold change ($2), significant differences in mRNA

levels were detected in 662 genes between the LLS and LLR,

which included 329 up-regulated and 333 down-regulated genes in

LLR. Among the 662 differentially expressed genes, only 225

genes were putatively identified using Blast2go search of GenBank,

including 107 up-regulated (Table 2) and 118 down-regulated

(Table 3) genes in the LLR. Identities of the remaining 437 genes

have not been determined in similarity search of GenBank using

Blast2go.

Comparison of gene expression levels by hierarchical

clustering. The 329 up-regulated genes and 333 down-regu-

lated genes (identified with microarray and Blast2go similarity

search) in the LLR strain, selected based on the P value (P,0.05)

and fold change ($2), were analyzed by using hierarchical

clustering analysis and plotted as a heat map with the ArrayStar

software (Fig. 1A). Each column represented a sample (LLS or

LLR) and each row represented a gene. The gray scale depicted

relative levels of gene expressions from low to high with

corresponding grayscale from light (for lower expression) to dark

(for higher levels). The gene clustering at the left of the heatmap

indicated the presence of three groups of genes with distinct

expression profiles of 662 genes ($2-fold change) across samples.

Group 1 (G1) (413 genes) was separated into subgroups of G1a

Table 2. Cont.

Seq ID Sequence annotation Fold change P value

L3539 transmembrane protease 30.46 0.000386

L2022 trypsin: salivary 3.52 2.19610‘-6

L3508 venom serine carboxypeptidase-like 5.36 2.48610‘-6

L4429 venom serine carboxypeptidase-like 2.14 0.000131

L2932 ves g 5 allergen 2.39 0.000061

L4213 ves g 5 allergen 2.85 0.000014

LL_466 ves g 5 allergen 2.24 0.0000212

L868 vitellogenic carboxypeptidase 2.26 0.0000582

L2069 xenopus tropicalis clone ch216- complete sequence 3.38 0.0153

L4505 zinc metalloproteinase c 2.98 0.0000355

doi:10.1371/journal.pone.0037586.t002
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Table 3. Identification of 118 significantly down-regulated gene ($2-fold) in LLR using microarrays and analyzed with ArrayStar
and Blat2go protocol (www.blast2go.org).

Seq ID Sequence annotation Fold change P value

L2460 acyrthosiphon pisum protein takeout-like mrna 2.04 0.00091

L4322 alkylated dna repair protein alkb-like protein 8 3.38 0.000356

LL_476 apolygus lucorum microsatellite ll-5 sequence 2.30 0.00369

L6435 atp-binding cassette superfamily 4.49 0.00267

L6338 ax4 myb domain-containing protein cds 4.00 0.0000124

L4040 brachyspira intermedia pws complete genome 2.18 0.0116

L2273 callithrix jacchus sonic hedgehog mrna 3.06 0.00976

L5702 candidatus pelagibacter complete genome 2.02 0.0184

L1023 cathepsin a 3.46 3.07610‘-6

L3275 cathepsin a 2.35 3.04610‘-6

L3761 cathepsin a 2.61 0.0000398

L4973 cathepsin a 2.82 0.0000325

L6192 cathepsin a 2.72 3.49610‘-6

L6305 cathepsin b precursor 2.32 0.000194

L6308 cathepsin d 2.48 0.000595

L6180 cathepsin l 15.51 4.35610‘-7

LL_76 cathepsin l 2.18 6.58610‘-6

L3298 cathepsin l precursor (major excreted protein) mrna 2.57 0.0000781

L4110 cathepsin r-like 2.15 0.000068

L496 receptor for egg jelly 2 protein precursor 17.67 6.25610‘-7

L2462 hypothetical protein 71.20 2.69610‘-6

L2548 chromosome 3 clone RP11-556G18 map 3p (H. sapiens) 8.81 4.11610‘-7

L5687 chromosome clone rp11- (homo sapiens) 4.62 0.0000177

L1965 chromosome clone rp23- (mus musculus) 2.07 0.000113

L3117 chromosome clone rp23- (mus musculus) 100.39 0.0000318

L5568 chromosome clone rp23- (mus musculus) 15.46 5.17610‘-6

L1035 conserved protein 38.71 1.60610‘-7

L5626 conserved protein 29.51 6.99610‘-7

LL_395 conserved protein 48.71 6.21610‘-7

L3444 counting factor associated protein d-like 2.49 0.0000287

L2459 cuticle protein 6 2.08 0.0244

L787 cuticular protein 62bc 4.62 0.00108

L3905 cysteine protease cp5 2.60 6.57610‘-6

L561 cytoplasmic polyadenylation element-binding protein 2 27.52 1.72610‘-6

LL_46 cytoplasmic polyadenylation element-binding protein 2 28.05 1.06610‘-6

L583 defensin a 4.22 1.08610‘-6

L562 drosophila erecta gg13471 (dere\gg13471) mrna 2.56 0.00976

L1412 drosophila mojavensis gi24712 (dmoj\gi24712) mrna 12.38 1.66610‘-7

L1974 drosophila mojavensis gi24712 (dmoj\gi24712) mrna 16.90 5.64610‘-7

L5888 eggshell RP45 [Rhodnius prolixus] 19.78 1.89610‘-7

L930 eggshell rhodnius prolixus rp45 partial cds 7.56 1.60610‘-7

L4775 eggshell RP45 [Rhodnius prolixus] 147.45 0.0000252

L3689 endopolygalacturonase 5.88 5.21610‘-6

L410 eukaryotic aspartyl protease family protein 2.66 0.000479

L4254 follicle cell protein 3c-1 10.72 0.000117

LL_358 foot protein 1 variant 4 7.11 1.86610‘-7

L755 ga24146 (dpse\ga24146) mrna 25.37 5.29610‘-6

L6045 gametocyte-specific factor 1 2.26 0.00597

Gene Regulation in Acephate-Resistant TPB

PLoS ONE | www.plosone.org 7 May 2012 | Volume 7 | Issue 5 | e37586



Table 3. Cont.

Seq ID Sequence annotation Fold change P value

LL_304 gamma-interferon-inducible lysosomal thiol reductase 5.41 0.0000419

L4147 genomic chromosome clone: (lotus japonicus) 19.29 0.000014

L552 granzyme h-like 3.62 0.0062

L1938 gryllus bimaculatus gbcontig30355 5.31 0.0000247

L6235 gtp-binding protein alpha gna 2.57 0.00257

LL_573 heinz 1706 chromosome 1 clone hba-57j16 map equence 4.13 0.0000213

L4603 histone h1 2.42 0.000541

L369 homeobox protein pknox2 isoform 2 2.27 0.000135

L5329 hypothetical protein [C. tropicalis MYA-3404] 2.02 0.00295

L5570 isoform a 2.07 0.000726

L1141 keratin-associated protein 10-4-like mrna 5.33 3.00610‘-6

L5833 laminin subunit alpha 2.08 0.0000552

L1954 lipase 1 precursor 2.48 0.000117

L6274 lipase 3 3.10 0.00138

L2994 lysosomal acid 2.81 0.000292

L5540 MAA_09280 [Metarhizium anisopliae ARSEF 23] 2.50 0.041

L3946 merozoite surface protein 152.53 0.0000356

L3911 mitotic spindle assembly checkpoint protein mad2 2.07 0.000304

L1931 multidrug resistance protein 1 2.15 0.000514

L261 nasonia vitripennis protein piwi-like mrna 2.32 0.00215

L6396 nematostella vectensis protein partial mrna 7.02 3.24610‘-7

L3125 odorant-binding protein 5 2.07 0.259

L3878 oryza sativa japonica group os04g0107700 complete cds 2.49 4.64610‘-6

L3316 ov09f09 dna polymerase delta subunit 3 complete cds 4.22 0.0000434

LL_617 pao retrotransposon peptidase family protein 2.09 0.000151

LL_645 pediculus humanus corporis protein takeout mrna 2.87 0.000225

L4935 peptidase c1a papain 5.77 6.36610‘-7

L871 peptide-n4-(n-acetyl-b-d-glucosaminyl) asparaginase amidase 65.26 0.0000227

L1761 predicted protein [Nematostella vectensis] 4.62 0.00192

L3170 prolixicin antimicrobial peptide 3.28 1.50610‘-6

L1206 pseudonocardia dioxanivorans complete genome 3.44 3.54610‘-6

L5409 pseudonocardia dioxanivorans complete genome 3.57 3.63610‘-6

L6148 pseudonocardia dioxanivorans complete genome 3.82 3.04610‘-6

LL_744 reverse ribonuclease integrase 2.12 0.000185

L2434 ribosomal protein l27e 2.18 0.000763

L6457 schistosoma mansoni strain puerto rico chromosome 2.68 0.00563

L4730 secreted salivary gland 2.80 4.17610‘-6

LL_19 secreted salivary gland mrna (ixodes scapularis) 33.51 0.0000169

LL_20 secreted salivary gland mrna (ixodes scapularis) 27.27 6.85610‘-7

L605 seminal fluid protein hacp037 2.01 0.0985

LL_54 seminal fluid protein hacp037 2.18 0.00268

L3098 serine carboxypeptidase-like enzyme 11.01 0.000138

L1017 serine protease 34.41 6.20610‘-7

L5977 serine protease 146.15 0.0000199

L6207 serine protease 10.29 0.0000794

LL_104 serine protease 3.44 7.25610‘-6

LL_119 serine protease 30.08 6.11610‘-7

LL_672 serine protease 2.42 7.21610‘-6

L3307 serine protease [Creontiades dilutus] 2.12 0.0000554
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and G1b. All genes in G1a (23 genes) were down-regulated in LLR

strain. G1b was separated into G1b1 (202 genes) and G1b2 (188

genes). The genes in G1b1 appeared to be up-regulated, while the

genes in G1b2 were down-regulated in LLR (Fig. 1A). Group 2

had subgroups G2a (122 genes) and G2b (125 genes). Genes in

G2a appeared to be down-regulated. Genes in G2b were up-

regulated in LLR. Group 3 (G3) was a small group (2 genes), and

the genes in G3 were highly up-regulated in the LLR strain.

Scatter-plot comparison of gene expression levels

between LLS and LLR. A total of 6,688 valid gene expression

data (log2) points (dots) of LLR were pairwise plotted against the

same genes of LLS (Fig. 1B). The two sets of gene expression data

showed linear correlation with R2 0.89. When the Student’s t-test

was selected, there were 1,638 and 2,534 genes that showed

significantly different between LLS and LLR at 99% and 95%

confidence interval levels, respectively. Dots of the scatter plot in

the upper left corner represented up-regulated genes, and dots in

low right corner represented down-regulated genes (Fig. 1B).

Distance between a dot and the regression line (R) indicated a

gene expression level with longer distance for higher up- or down-

regulation. A total of 662 genes (dots above line 2a and below line

2b) showed 2-fold changes, 191 genes (dots above line 4a and

below line 4b) showed 4-fold changes, and 113 genes (dots above

line 8a and below line 8b) exhibited 8-fold changes (Fig. 1B)

between LLS and LLR.

Annotation and functional analysis of up- and down-

regulated genes. Three hundred and twenty-nine up-regulated

and 333 down-regulated ($2-fold) gene cDNAs were subjected

separately to blast2go mapping and annotation to determine each

putative protein’s role in biological process and molecular

function. Annotation with blast2go showed that 66 genes of the

662 differentially expressed genes were involved in biological

processes at GO level 2, including 41 up-regulated and 25 down-

regulated genes in LLR. Among the 41 up-regulated genes, 18

(27.3% of the 66 biological process-related genes) genes were

associated with metabolic processes (Fig. 2A), while only 5 of the

25 (7.6% of the 66 genes) down-regulated genes were associated

with the same function of metabolic process (Fig. 2A). Among the

662 differentially expressed genes, 76 genes were involved in

molecular functions, including 49 up-regulated and 27 down-

regulated genes at GO level 2 in LLR. Among the 49 up-regulated

genes, 37 (48.7% of 76 molecular function-related genes) genes

were associated with catalytic activities (Fig. 2B), while only 17 of

the 27 (22.4% of the 76 genes) down-regulated genes were

associated with catalytic activities. Results indicated that more

than 3.6-fold of the metabolic-related genes were up-regulated

compared to those down-regulated genes with the same biological

function. The results also indicated a substantial increase of

metabolic activities in LLR. Similarly, analysis of molecular

function revealed a large portion of catalytic-related genes with

significant up-regulations, suggesting an increase of catalytic

activities in LLR compared to LLS.

Potential association of up-regulated genes with altered
acephate-resistance in L. lineolaris

Up-regulation of esterase genes and metabolic resistance

development. Increase of esterase activities in LLR prompted

further examination and comparison of esterase gene expressions

and cDNA sequences between LLS and LLR. Six esterase genes in

LLR showed significantly higher gene expression levels (2.14–

7.57-fold increase) than those in LLS (Table 2). No esterase genes

were down-regulated in LLR (Table 3). By using cDNA library

Table 3. Cont.

Seq ID Sequence annotation Fold change P value

L772 serine protease inhibitor 3-like 2.09 0.000336

LL_207 serine protease inhibitor 3-like 2.18 0.000211

L4053 serine protease nudel 4.92 0.0000199

LL_417 serine protease nudel 6.70 0.0000291

L5464 serrano protein 4.43 0.000478

L3469 srz2 chromosome 20 complete dna sequence 6.88 1.73610‘-6

L2301 strongylocentrotus purpuratus mgc83166 protein mrna 2.09 0.0396

L3344 subfamily c1a unassigned peptidase (c01 family) 2.76 0.0000129

L171 suppression of tumorigenicity 14 (colon carcinoma) b 2.23 0.0000565

L5341 talinum paniculatum 26s ribosomal rna partial sequence 8.39 5.76610‘-6

L5396 tpa: cuticle protein 7.04 0.000362

L6645 translation initiation factor if-2 25.74 0.0000226

L677 tribolium castaneum ga10301-pa mrna 24.39 0.00019

L544 unknown [Lygus lineolaris] 2.12 0.0000113

L5739 venom serine carboxypeptidase-like 2.49 0.000475

L1935 ves g 5 allergen 8.68 6.26610‘-7

L140 vitellogenin 3.34 0.000159

L4564 vitellogenin 6.26 1.99610‘-6

LL_168 vitellogenin 3.71 2.94610‘-6

L3867 zebrafish ch211-254e10 in linkage group complete sequence 3.90 0.000201

L2628 zinc finger c4h2 domain-containing transcript variant 2 mrna 2.37 0.0557

doi:10.1371/journal.pone.0037586.t003
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sequencing and RT-PCR, two different full length esterase cDNAs

(LLE1 and LLE4) were obtained from both LLS (designated as

LLSE1 and LLSE4) and LLR (designated as LLRE1 and LLRE4).

LLE1 represented the most abundant esterase gene transcripts of 4

highly similar variants (data not shown) among the 6 up-regulated

esterase genes in LLR. The others had one or two variants. The

LLE1 showed 2.6-fold increase of the esterase gene expressions in

LLR. LLE4 showed the highest increase of esterase gene

expressions (7.57-fold) in LLR. Sequence alignment of deduced

proteins, including a previously published esterase AAT09370 [7],

revealed three conserved catalytic center residues, S213, E342, and

H468 (Fig. 3). Searching with InterPro Scan and MyHits (http://

www.expasy.ch/tools/) indicated that all putative proteins be-

longed to type-B carboxylesterase with conserved sequence pattern

(F-[GR]-G-x(4)-[LIVM]-x-[LIV]-x-G-x-S-[STAG]-G) around ser-

ine active site at positions 200–215 (Fig. 3). The 1171-bp LLSE1

and LLRE1 had 9 nucleotide substitutions, resulting in 5 amino

acid differences in the deduced 570-residue proteins between LLS

and LLR. The second 1801-bp esterase cDNA, LLSE4 from LLS

and LLRE4 from LLR, encoded 546-residue protein. There were

11 nucleotide and 4 amino acid substitutions between LLSE4 and

LLRE4. Pair-wise sequence alignment showed that esterase

sequence identities were approximately 99.1%, 52%, and 52%

between AAT09370 and LLE1, AAT09370 and LLE4, and LLE1

and LLE4, respectively. The LLE1 is very similar to AAT09370,

but they differ at 8 amino acid positions (Fig. 3).

Validation of up-regulated esterase genes using real-time

PCR (qRT-PCR). Real-time PCR was conducted to verify

reproducibility of microarray data. Four representative genes

(LLE1–4) were selected and subjected to real-time qRT-PCR

validation in acephate-selected TPB adults (Lula1000) collected

from the same location in 2011 as was done for LLR in 2010.

Expression levels of LLE1 in Lula-CK and Lula1000 were

significantly up-regulated by 24- and 57.9-fold compared to the

gene expression in LLS (Fig. 4A). LLE2 gene expressions in Lula-

CK and Lula1000 were also up-regulated by 3.4- and 4-fold over

that of LLS (Fig. 4B). Lula-CK and Lula1000 showed 6.3- and 15-

fold higher LLE3 gene expressions than LLS (Fig. 4C). LLE4 gene

expressions in Lula-CK and Lula1000 were also up-regulated by

2.9- and 6.3-fold over that of LLS (Fig. 4D). Lula1000 and Lula-

CK were collected from the same location and were the same age.

After acephate (1,000 mg/L) selection and removal of susceptible

bugs, all four esterase gene (LLE1–4) expressions increased 2.4-,

1.2-, 2.4-, and 2.2-fold, respectively. These results suggest up-

regulated esterase genes are closely associated with reduced

susceptibility in acephate-selected TPB (Lula600, Table 1).

Synergistic effect of esterase inhibitors on acephate

toxicity against two TPB colonies. By applying esterase

inhibitor, the toxicity of acephate was increased against both field

and acephate-selected colonies of TPB (Fig. 5). Approximately

35.90% of Leland TPBs were killed by 72 mg/L acephate-only

treatment. DEF-only killed 7.97% of the bugs. Acephate+DEF

killed 40.31% of the bugs, which was numerically higher but not

significantly different from acephate-only treatment. Acepha-

te+TPP killed 49.04% of Leland field bugs, which was significantly

higher than that of acephate-only treatment. After corrections with

each inhibitor’s mortality, synergistic ratios of DEF and TPP were

0.98 and 1.34, respectively. Similarly, approximately 63.330% of

acephate-selected TPBs (LLX) were killed by 144 mg/L acephate-

only treatment. DEF-only killed 13.33% of the bugs. Acephate+-
DEF killed 88.33% of the bugs, which was significantly different

from acephate-only treatment. Acephate+TPP killed 85.24% of

Leland field bugs, which was also significantly higher than that of

acephate-only treatment. After corrections with each inhibitor’s

mortality, synergistic ratios of DEF and TPP against LLX colony

were 1.37 and 1.34, respectively.

Up-regulation of a glutathione S-transferase (GST) gene

in LLR. By cDNA library sequencing, 19 GST cDNAs were

obtained. These GST cDNAs were re-assembled into 11 highly

different contigs or singletons. Multiple sequence alignment

showed that average sequence identities were 30% (10–86%)

among 11 predicted GST protein sequences. These GSTs had

18.6% (17–45.5%) average sequence identities with previously

reported GST from L. lineolaris (ABC46449; [8]). Based on their

relatively low sequence identities, we suggest that all 11 GSTs from

this study are newly cloned GSTs. Microarray data indicated that

only one GST gene (L6147) was up-regulated by 2.14-fold in LLR

(Table 2). However, no GST genes were down-regulated in LLR.

The 691-bp full-length cDNA encoded a 203-residue GST

protein. Pair-wise alignment of protein sequences showed only

19.2% amino acid identity between this up-regulated GST in LLR

and the only GST reported previously [8], suggesting a new GST

might be related to reduced acephate susceptibility in L. lineolaris.

Up-regulation of Cytochrome P450 monooxygenase

(P450) genes in LLR. A total of 13 partial cDNAs of P450s

were obtained from cDNA library sequencing. Microarray data

showed that three P450 genes were up-regulated by 2.7- to 3-fold

in LLR (Table 2). No P450 genes were down-regulated in LLR

(Table 3). L3359 belongs to CYP 6 family, which is commonly

associated with pesticide resistance in insects. LL_39 and L4510

genes are also similar to P450s in the CYP 6 family. Comparison

of 74-residue peptide close to C-termini revealed 31.9–52.8%

amino acid identities among the three putative P450 proteins.

Showing low sequence identities (38.9–41.7%) to 3 highly similar

P450s (CYP6X1v1-3; [21]) of L. lineolaris in GenBank, L3359,

LL_39, and L4510 may be newly sequenced P450s with potential

association with insecticide resistance.

To test whether over-expression of P450 genes confer multiple

resistances to different insecticide classes, dose responses to acephate

and imidacloprid were evaluated in 9 field populations collected

from northwest Mississippi, including Lula. Results showed variable

survival rates in different populations (Fig. 6). Responses to both

insecticides appeared to be correlated. The population showing low

susceptibility to acephate also had low susceptibility to imidacloprid.

The correlation was significant with R2 value 0.81 (Fig. 6).

Potential association of down-regulated genes with
reduced acephate susceptibility in L. lineolaris

Down-regulation of eggshell and vitellogenin genes

associated with egg production. Microarray data showed

Figure 1. Analysis of microarray data and comparison of 6,688 gene expression levels between acephate-susceptible (LLS) and –
resistant (LLR) tarnished plant bugs using ArrayStar software. A: Hierarchical clustering analysis of 329 up-regulated and 333 down-
regulated genes ($2-fold, P,0.05) in the LLR. Each column represented a sample (LLS or LLR) and each row represented a gene. The gray scale
depicted the relative levels of gene expressions from low to high with corresponding grayscale from light (for lower expression) to dark (for higher
levels). B: Scatter-plot comparison of 6,688 gene expression levels between LLS and LLR. The dots of the scatter plot in the upper left corner
represented up-regulated genes, and the dots in low right corner represented down-regulated genes. Dots above line 2a and below line 2b represent
up- and down-regulated genes by 2-fold; Dots above line 4a and below line 4b represent up- and down-regulated genes by 4-fold; Dots above line 8a
and below line 8b represent up- and down-regulated genes by 8-fold.
doi:10.1371/journal.pone.0037586.g001
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Figure 2. Annotation and functional analysis of 329 up-regulated and 333 down-regulated genes ($2-fold) in the LLR. A: Proportion of up-
regulated genes (left side) and down-regulated genes (right side) categorized based on their involvement in biological process at GO level 2 (Blast2go). B:
Proportion of up-regulated genes (left side) and down-regulated genes (right side) categorized based on different molecular function at GO level 2 (Blast2go).
doi:10.1371/journal.pone.0037586.g002
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that three eggshell protein genes were down-regulated by 7.56- to

147.45-fold in LLR. In addition, three vitellogenin genes were also

down-regulated by 3.34- to 6.26-fold in LLR (Table 3). Consis-

tently, no eggshell or vitellogenin genes expressed significant

increases in their gene transcript abundances in LLR (Table 2).

Vitellogenin coding region of L4564 and LL_168 was overlapped

with that of L140, but their cDNA sequence had only 33% and

45% identity, respectively, with L140. Therefore, L4564 and

LL_168 are different vitellogenin cDNAs from L140. Because

L4564 and LL_168 were not overlapping, whether they are from

the same vitellogenin gene needs to be determined in a future

study.

Down-regulation of protease and cathepsin genes

associated with protein hydrolyzation. In LLR, only two

protease and one salivary trypsin were up-regulated by 30.46–

36.71- and 3.52-fold (Table 2), respectively. Thirteen serine

protease genes showed 2.09- to 146.15-fold decrease in expression

in LLR (Table 3). Another 11 cathepsin genes were also down-

regulated by 2.15- to 15.51-fold in LLR (Table 3).

Discussion

Up-regulation of esterase genes associated with
increased detoxification

Possessing ester bonds is a common feature in organophosphate

insecticides, including acephate. Esterases detoxify organophos-

phate insecticides directly by splitting esters into an acid and an

alcohol [22]. In addition, esterases might be involved in pyrethroid

resistance development [23]. In this study, we consistently

demonstrated that esterases are major detoxification enzymes

and are responsible for the metabolic resistance closely associated

with increased acephate resistance in the tarnished plant bug. By

using acephate selection, we first demonstrated that elevated

resistance level was closely correlated with increased esterase

activities (Table 1). A previous study showed that fluctuation of

esterase activities was well synchronized with seasonal increases of

resistance levels in TPB [7]. Increased esterase activity in the late

season likely resulted from pesticide applications on cotton.

Without further exposure to insecticides in winter, the populations

become less resistant. Therefore, insecticide resistance levels are

closely associated with the intensity of chemical sprays. Seasonal

variability in insecticide resistance are well documented

[24,25,26]. Insecticides kill susceptible individuals and resistance

levels evolve as resistant individuals increase over the growing

season [27,28].

Higher esterase activities might result from altered gene

sequence and hence the protein sequence difference between

LLS and LLR. Careful examination of amino acid substitutions

between LLSE1 and LLRE1 revealed 5 amino acid substitutions,

but these substituted amino acids were strongly similar. Besides 2

strongly similar residue substitutions, LLRE4 had one weakly

similar amino acid substitution (G to A) and a different amino acid

substitution (S to R), suggesting a quality change of the LLRE4

esterase. Esterases are often found in multigene families [29,30]

and it is very likely that a complex of esterases is present in the

tarnished plant bug. cDNA library sequencing and microarray

Figure 3. Predicted amino acid sequence of two new esterases from LLS (LLSE1 and LLSE4) and LLR (LLRE1 and LLRE4) aligned with
a previously reported esterase (AAT09370) from L. lineolaris using Clustal W method (gap penalty: 3.0, gap length penalty: 0.2) of
DNAStar MegAlign (Ver. 8). GenBank accession: LLSE1: JQ964230; LLRE1: JQ964231; LLSE4: JQ964232; LLRE4: JQ964233. Three catalytic center
residues (S213, E342, and H468) were boxed. Amino acid substitutions between LLS and LLR are marked with ¤; Amino acid substitutions between
AAT09370 and LLE1 are marked with 0. Hyphens represent sequence alignment gaps. Identical residues among all esterases are shaded with black
background.
doi:10.1371/journal.pone.0037586.g003

Figure 4. Comparison and verification of transcriptional levels of two up-regulated (detected by microarray) esterase genes (LLE1
and LLE4) using absolute estimating method in real-time PCR. LLS: laboratory susceptible strain; Lula CK: field population collected from Lula
MS as an aging control; Lula1000: field population collected from Lula MS and selected with 1,000 mg/L acephate (90WP).
doi:10.1371/journal.pone.0037586.g004
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analysis in this study revealed multiple esterase genes and

differential expressed esterase genes in LLR. Overproduction of

gene transcripts might have resulted from the transcription of a

single copy of the esterase gene [31] or multiple copies of the

esterase genes [32,33]. It is possible that resistant TPBs may have

additional copies of esterase genes. A total of 14 esterase cDNA

fragments were obtained in this study. Further assembling of these

esterase cDNAs obtained at least 7 highly different esterase cDNAs

or genes in the tarnished plant bug. Of the esterase genes

examined, six of them were significantly up-regulated and none

were down-regulated in LLR.

Synergists are often used as a diagnostic tool to characterize

resistance mechanisms in pest populations. S,S,S-Tributyl phos-

phorotrithioate (DEF) inhibits hydrolysis of insecticides with ester

linkages [34,35]. Triphenyl phosphate (TPP) was recognized as a

specific inhibitor of carboxylesterase, which synergized the effect of

malathion by blocking the production of malathion mono-acid in a

resistant strain of Tribolium castaneum [36]. Based on our 2010 data,

Leland population had relatively lower resistance ratio (1.6) to

acephate. In this study, DEF was unable to synergize acephate

toxicity, indicating that the population had no elevated DEF-

suppressible esterases. The acephate-selected LLX colony is a

mixture of several populations collected from Delta regions of

Mississippi and Arkansas. It maintains 2–3-fold resistance ratio

relatively to the LLS colony. Significant DEF synergism to

acephate in acephate-selected LLX colony indicated that elevated

esterase gene expressions exist in LLX for detoxifying acephate.

Unlike DEF, TPP synergized acephate toxicity in both Leland

field population and acephate-selected LLX colony, suggesting

that both colonies had elevated carboxylesterases. These synergis-

tic data functionally proved that esterase-mediated metabolic

detoxification is potential resistance mechanism in acephate-

resistant TPB. To knock down detoxification genes, RNAi will be

conducted in future study to identify specific esterase genes that

are the most responsible for acephate resistance in TPB.

Up-regulation of a glutathione S-transferase gene and
potential association with metabolic detoxification in LLR

Glutathione S-transferases (GSTs) catalyze transformations of a

wide range of endogenous and xenobiotic compounds, including

carcinogens, therapeutic drugs, products of oxidative stress,

herbicides, and insecticides [37,38,39]. They have the capacity

Figure 5. Synergistic effect of two esterase inhibitors, S,S,S-
tributylphosphorotrithioate (DEF) and triphenyl phosphate
(TPP) on acephate toxicity against a field population and an
acephate-selected colony (LLX) of L. lineolaris. DEF and TPP were
used at 1%; Field population from Leland was treated with acephate at
72 mg/L and acephate-selected colony (LLX) was treated with acephate
at 144 mg/L.
doi:10.1371/journal.pone.0037586.g005

Figure 6. Correlation of survival rates between acephate-treated (OrRate) and imidacloprid-treated (ImRate) L. lineolaris collected in
September, 2011 in northwest Mississippi.
doi:10.1371/journal.pone.0037586.g006
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to conjugate reduced glutathione on the thiol of cysteine to various

electrophiles and to bind with high affinity to various hydrophobic

compounds [40]. Elevated GST activity has been associated with

resistance to all the major classes of insecticides, commonly

through increases in transcriptional rate, rather than qualitative

changes in individual enzymes [41,42]. Of the 19 GSTs analyzed

using microarray in this study, only one GST gene showed

significantly higher transcripts in LLR. However, no GST was

significantly down-regulated in LLR. GST enzyme activity data

were also consistent with GST gene expression data. Significantly

lower GST activity was found in the Lula natural population,

suggesting a lower GST activity baseline than LLS (Table 1).

Selection with Orthene 600 mg/L removed approximately 80%

susceptible bugs from the sample causing GST activity to increase

to a level similar to that of LLS. Considering GST enzyme activity,

expression fold changes, and the number of genes involved, we

postulate that GSTs may play a less significant role than esterases

in reduced susceptibility of L. lineolaris to acephate.

P450 oxidation and potential multiple resistance and
cross resistance to different classes of insecticides in LLR

Cytochrome P450 enzymes (mixed function oxidases, cyto-

chrome P450 monooxygenases, CYP), are a large and diverse class

of enzymes found in virtually all insect tissues. The function of

most P450 enzymes includes catalyzing the oxidation of organic

substances to fulfill many important tasks, from the synthesis,

degradation, and metabolic intermediations of lipids, ecdysteroids

and juvenile hormones to the metabolism of xenobiotic substances

of natural or synthetic origin [43]. P450-mediated resistance is

probably the most frequent type of metabolism based insecticide

resistance [44,45]. This mechanism may potentially affect several

classes of insecticides and thereby confer cross-resistance to

unrelated compounds due to their broad substrate spectra [46].

Most cases of P450-mediated resistance result from an increase in

detoxification. Resistance can occur by increased transcription of a

P450 leading to both increased expression of the protein and

increased detoxification of the insecticide [47]. In addition to over-

expressions of several esterase genes, acephate-selected bugs (LLR)

showed increased gene expressions of at least 3 different P450

genes. In the Mississippi Delta area, a variety of insecticides have

been used for cotton insect control. Tarnished plant bug has a

history of exposure to organophosphates and pyrethroids, and

resistances to these pesticides have been reported [9,5]. In recent

years, neonicotinoids have become a popular alternative for plant

bug control. P450s are associated with resistance to both

pyrethroids [44] and neonicotinoids [48]. Elevated expressions

of at least three P450 genes may confer multiple and/or cross

resistance to the three commonly used insecticide classes. Our

dose-response assays on field populations of TPB (Fig. 6) highly

supported this statement of multiple/cross resistance in LLR.

Dose-response assays on multiple populations (including Lula)

indicated a close correlation between survival rates of TPB treated

separately with LC50s of acephate and imidacloprid. We are

currently trying to develop a P450 enzyme activity assay method

to link enzyme activity and elevated P450 gene expression with

biological data.

Down-regulation of eggshell, vitellogenin, protease
genes associated with fitness cost

Insect eggshell is composed of a set of proteins (rich in proline

and alanine) synthesized by the follicular epithelium during the

oogenesis and organized into an inner zone (vitelline membrane)

and an outer zone (chorion) [49]. Vitellogenin is a unique group

of proteins that are synthesized extraovarially and become the

major egg yolk protein, vitellin [50]. Vitellogenin production by

females is a prerequisite for successful egg production, and is

directly linked to survival and reproductive success, thereby

affecting both individual and colony-level fitness [51]. Serine

proteases are enzymes that cleave peptide bonds in proteins.

They are responsible for coordinating various physiological

functions, including digestion, immune response, blood coagula-

tion and reproduction [52]. Very little research has been

conducted to link eggshell, vitellogenin, and protease production

with fitness cost and resistance to conventional insecticides. We

observed a substantial decrease of egg production in survivals

after treatment with Orthene 90WP at 240 mg/L. In this study,

we report an association of organophosphate resistance with

down-regulations of eggshell, vitellogenin, and protease genes in

L. lineolaris.

Microarray data revealed significant down-regulations of

eggshell, vitellogenin, and protease genes in LLR. The finding

could be valuable in addressing resistance issues in L. lineolaris.

When selection pressure increases, either through laboratory

selections or field sprays, resistant bugs with elevated esterase and

P450 levels could survive and relatively increase resistance gene

frequency after removal of susceptible bugs. But, reproductive

incompetency substantially limits resistant population growth.

When selection pressure is low and suitable host are abundantly

available, susceptible bugs, with higher quantities of proteases and

eggshell/yolk proteins, take reproductive advantage and increase

population density quickly. Considering seasonal fluctuation and

exposure-driven natures, we suggest that the acephate resistance in

TPB is controlled by multiple genes. We also suggest that the

resistance is associated with certain fitness cost.

In summary, microarray gene expression, Blast2go annotation,

and other molecular comparisons, in concert with bioassays and

enzyme activity data, revealed a significant increase of metabolic

processes in the acephate-selected strain, suggesting metabolic

detoxification as a major resistance mechanism. The resistance is

controlled by many genes. Esterases are critical in detoxification of

acephate, and suppression of esterases with inhibitors could

significantly abolish acephate resistance. P450s also played an

important role, along with less significant influence of GSTs.

Down-regulations of many reproductive- and digestive-related

genes indicated a potential fitness cost, which might dynamically

keep the resistance from becoming fixed in the population.

However, up-regulation of P450s and GSTs may increase the risk

of multiple and/or cross resistance to other insecticide classes.

Precautions must be taken to reduce selection pressure on target

insect. Genetic composition of field populations should be

constantly monitored to prevent potential genetic shift.
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